
The Sick LIDAR Matlab/C++ Toolbox:

A Quick Start Guide

Jason C. Derenick and Thomas H. Miller

Lehigh University

Computer Science and Engineering

Bethlehem, PA 18015 USA

derenick@lehigh.edu

March 24, 2008

1

Contents

1 Introduction 4

2 Compatible Devices 4
2.1 Compatible Sick LMS 2xx Units . 5
2.2 Compatible Sick LD Units . 5

3 Tested Distibutions 5
3.1 Linux . 5
3.2 Matlab . 5

4 Architectural Overview 5

5 Software Installation 6
5.1 Building and Installing C++ Drivers . 6
5.2 Building and Installing Mex Interface . 7

6 Interfacing the Sick LMS 2xx 9
6.1 Sick LMS C++ Driver Features . 9
6.2 Using the Sick LMS C++ Driver . 10

6.2.1 Coordinate System . 11
6.2.2 Program Structure . 11
6.2.3 Properly Linking Programs . 13
6.2.4 Example Programs . 13

6.3 Using the Sick LMS Mex Interface . 14
6.3.1 Mex Commands . 14
6.3.2 Program Structure . 16
6.3.3 Example Programs . 17

6.4 Configuring the Sick LMS 2xx . 18

7 Interfacing the Sick LD 19
7.1 Sick LD C++ Driver Features . 19
7.2 Using the Sick LD C++ Driver . 20

7.2.1 Coordinate System . 20
7.2.2 Program Structure . 20
7.2.3 Properly Linking Programs . 24
7.2.4 Example Programs . 24

7.3 Using the Sick LD Mex Interface . 25
7.3.1 Mex Commands . 25
7.3.2 Program Structure . 26
7.3.3 Example Programs . 27

2

7.4 Configuring the Sick LD . 28

8 Uninstalling the Toolbox 30
8.1 Uninstalling the C++ Drivers . 30
8.2 Uninstalling the Mex Interfaces . 31

9 Doxygen Documentation 31

10 Open–Source Software License 31

List of Tables

1 Argument list for commands supported by Sick LMS mex interface. 15
2 Example calls for commands supported by the Sick LMS mex interface. . . 15
3 Structure returned from sicklms(‘init’,DEVICE PATH,DESIRED BAUD) . 15
4 Structure returned from sicklms(‘grab’) . 16
5 Commands supported by Sick LD mex interface. 26
6 Example calls for commands supported by the Sick LD mex interface. . . . 26
7 Structure returned from sickld(‘init’,DEVICE IP) 26

3

1 Introduction

The Sick LIDAR Matlab/C++ Toolbox is an open-source project aimed at providing stable
and easy-to-use C++ drivers for Sick LMS 2xx and Sick LD laser range finders. It is released
under a flexible open–source license (see Section 10). In addition to low-level drivers, the
package also features an easy to use Matlab mex interface, which allows the end-user to
stream real-time range and reflectivity data directly into Matlab. This feature is especially
attractive as it facilitates the rapid development of algorithms by exploiting the high-level
functionality afforded by Matlab’s vector-based operations. The toolbox is branched from
the source code used by the Ben Franklin Racing Team, whose car – Little Ben – was one
of only six vehicles to successfully complete the 2007 DARPA Urban Grand Challenge.

This document covers the basics to get you quickly up and running using the most
common features of the toolbox. In particular, this document will guide you through the
installation process as well as illustrate how to acquire data via the Matlab/C++ driver
interfaces. Accordingly, C++ and Matlab code examples are presented to illustrate its use.
It should also be noted that this document is by no means a comprehensive manual over
all features of the toolbox. It is meant as a jumping off point for further use and to get
the application developer/end–user up and running as quickly as possible. The user should
be familiar with the operation and telegram manuals for both Sick LMS 2xx and Sick LD
units. This is especially true when it comes to configuring the devices.

2 Compatible Devices

Figure 1: The Sick LIDAR Matlab/C++ Toolbox supports both the LMS 2xx and LD families of Sick LIDARs.
Pictured are a few of the Sick LIDARs used to explicitly test the toolbox: (Left) A Sick LMS 200–30106 (Center) A
Sick LMS 291–S05. (Right) A Sick LD–LRS 1000.

4

2.1 Compatible Sick LMS 2xx Units

The communication protocol implemented with the low-level Sick LMS 2xx C++ driver is
compatible with LMS 200/220 firmware version: V02.30 Q501, LMS 211/221/291 firmware
version: X01.27 Q501, and LMS 211/221–S19/–S20 firmware version S01.31 Q393 [1]. The
code has been explicitly tested with the following units: Sick LMS 200–30106, Sick LMS
291–S05, and Sick LMS 291–S14.

2.2 Compatible Sick LD Units

The communication protocol implemented with the low–level Sick LD C++ driver is com-
patible with LD–LRS 1000/2100/3100 models [2]. The code has been tested explicitly with
Sick LD–LRS 1000 units.

3 Tested Distibutions

3.1 Linux

The Sick LIDAR Matlab/C++ Toolbox was explicitly tested with the following Linux
distributions:

• Ubuntu 6 (Feisty Fawn, i386) and 7 (Gutsy Gibbon, i386)

• Debian (amd64)

• Fedora 8 (i386)

3.2 Matlab

The toolbox was also explicitly tested against the following Matlab distributions:

• R14

• R2007a

• R2007b

4 Architectural Overview

Figure 2 shows a high–level schematic of the Sick LIDAR Matlab/C++ Toolbox. At the
highest level, the toolbox is comprised of a set of Matlab mex files that directly interact
with a corresponding low–level C++ driver. All drivers are comprised of two fundamental
components that are derived from the shared base code over which each is built. In par-
ticular, each driver features an interface to acquire data and configure the device as well
as a buffer monitor thread responsible for ensuring only the most recent scan information
is returned via said interface. As expected, the interface is used to send commands to the

5

Figure 2: (Left) The high–level schematic for the Sick LIDAR Matlab/C++ Toolbox. High–level mex functions
directly interact with low–level C++ drivers that share a common base framework. (Right) Schematic of a typical
application using the interface provided by the low–level driver. Each driver features a buffer monitor thread that is
responsible for ensuring the receive buffer never becomes saturated. The most recent Sick LMS reply is buffered in
a message container where the interface can access it.

device. All replies are handled by the buffer monitor where they are encapsulated as a
message object before being stored in the container where the interface can acquire them.

It is important to note that although the Sick LMS 2xx driver is RS–232/422 and the
Sick LD driver is Ethernet, both share a high–level of commonality that allows them to
exploit the base framework. In this case, the base code simply provides a primitive a
definition of a Sick LIDAR driver over which more specialized drivers can be built. It is
especially useful as it promotes modularity and emphasizes code reuse where possible.

5 Software Installation

As the toolbox is written to exploit the portability afforded by GNU Autotools, its instal-
lation is a rather straightforward process.

5.1 Building and Installing C++ Drivers

Notational Convention: For the sake of generality, we denote the
Sick LIDAR Toolbox project root directory as sicktoolbox-x where
x denotes the version number of the toolbox. In this document, (e.g.
in example calls and directory locations) be sure to replace x with the
correct version number. For example, if the version is 1.0 then replace
references to sicktoolbox-x with sicktoolbox-1.0.

To install the C++ drivers libraries, simply change to the project’s root directory
(i.e. sicktoolbox-x) and do the standard three–step installation procedure for any GNU
Autotools project. In particular, do the following from your command prompt:

6

./configure

make

sudo make install

The configure script will auto-generate a C/C++ header listing the current configuration
of the platform. Executing make will build the Sick driver libraries and make install

will copy the libs to /usr/local/lib and the headers to /usr/local/include. Since
make install requires writing to protected directories, this step must be done as an ad-
ministrator/root. If your Linux distribution does not support the sudo command or your
user is not listed in the sudoers file then you can simply use su to switch to the superuser
before running make install.

This process will install two separate libraries built as dynamically linked shared objects.
As a result, it may be necessary to update your dynamic linker’s cache if it reports that it
can’t resolve libsicklms-x.so or libsickld-x.so. For instance, assuming you are using
the GNU ld linker, you might encounter the following error after running a program for
the first time after installation:

lms_config: error while loading shared libraries: libsicklms-1.0.so.0:

cannot open shared object file: No such file or directory

In this case, the error occurred after running lms_config for the first time. To remedy
this, run the following from your command line to update your linker’s cache:

ldconfig

This should only ever have to be done once after the initial installation – once the cache is
updated, all programs referencing the libraries will now be properly linked at run-time.

5.2 Building and Installing Mex Interface

Building the mex interface(s) requires an equally straightforward process. Assuming you
are in the project’s root directory (sicktoolbox-x) and have successfully built and installed
the C++ interfaces (see Section 5.1), execute the following from your command line:

cd matlab

./config_mex

./build_mex

sudo ./install_mex

The three bash scripts (i.e. config_mex, build_mex, and install_mex) are used to respec-
tively configure, build, and install the mex interfaces to the appropriate Matlab directory.
In addition to the mex binaries, these scripts also modify certain files in your Matlab in-
stallation directory. Figure 3 illustrates the process of installing the Matlab me interfaces

7

Figure 3: Installation example for the Sick LIDAR Matlab/C++ Toolbox mex interfaces. The steps shown correspond
to configuring, building and installing the mex interfaces via the bash scripts found in the sicktoolbox-x/matlab/

directory. In this case, ./configure was run beforehand during the installation of the C++ libraries so it is not
included as one of the shown steps.

via the these three bash scripts. In this case, the current directory was already set at
sicktoolbox-x/matlab so the first step is omitted.

In this version of the toolbox, this installation is kept separate from the standard C++
library installation for the sake of simplicity in the GNU Autotools scripts. In a future
release, we aim to integrate the entire process into a single build process.

If you want to build only one mex interface, you can specify it by passing it as an
argument to ./build_mex. For instance, to build only the Sick LMS 2xx interface, you
would call build_mex as follows:

./build_mex lms

Similarly, you can call it as build_mex ld to build only the Sick LD mex wrapper. Figure
3 shows the steps being executed in a terminal under a Debian installation. In this case,
./configure was run beforehand during the installation of the C++ libraries so it is not
included as one of the shown steps.

8

Attention Ubuntu Users: If you plan to use a USB–COMi–M adapter
under Ubuntu Feisty Fawn or newer, be sure to uninstall brltty and
brltty-X11 (using synaptic is the easiest way). Otherwise, you will
not see a /dev/USBx. By default, they grab the USB serial device, pre-
venting it from showing up under /dev/. Once uninstalled, reboot your
machine and reconnect your USB–COMi–M adapter. You will now see
the /dev/ttyUSBx device path associated with your Sick LMS unit.

6 Interfacing the Sick LMS 2xx

6.1 Sick LMS C++ Driver Features

The Sick LMS 2xx C++ driver provides a concise interface for conveniently acquiring
measurements and configuring the unit. Following are some of the available features:

Multi-threaded Implementation: The Sick LMS 2xx C++ driver utilizes the pthreads
library. While the main thread is running, the driver thread (in particular, the “buffer
monitor”) is busy ensuring that only the most recent complete scan is buffered for return.
As threading is integrated into the driver framework, there is no need to worry about
buffer management. By designing the driver this way, we alleviate as much overhead for
the application developer as possible, by allowing him/her to focus on data–processing as
opposed to data–management.

Supports a Variety of Measurement Modes: The Sick LMS 2xx provides a sim-
ple interface for acquiring measurements (whether they be range or reflectivity). Among
other things, the driver supports streaming high–resolution partial scans as well as mean–
measured values. Additionally, it supports specifying a measurement subrange in the event
that the application is only interested in a subset of the data. This latter feature is es-
pecially useful to limit bandwidth consumption over low–speed connections. On standard
LMS models (not LMS Fast), the driver allows the user to request a reflectivity stream
instead of a range stream. For LMS Fast models, the driver supports the streaming of both
range and reflectivity at full–data rate.

500Kbps Support via USB–COMi–M: In addition to supporting the standard baud
rates (9600bps, 19200bps, and 38400bps), the driver also supports streaming data at a
rate of 75Hz (500Kbps) from the Sick LMS 2xx. In order to achieve this data rate, a
USB–COMi–M USB to RS–232/422/485 industrial adapter is required. Using this adapter
(setup appropriately for RS–422) in conjunction with the driver allows data acquisition
from the Sick at the fastest rate possible. This approach provides a highly cost effective

9

way to enable high–speed communication without having to invest in a proprietary Sick
RS–422 adapter.

For additional details, please see our tutorial on enabling RS–422 via the USB–COMi–
M. It is included in the toolbox and can be found in the sicktoolbox–x/manuals directory.
It provides a simple tutorial for setting up your own high–speed configuration.

Baud Rate Autodetection: The Sick LMS 2xx C++ driver also employs an intelligent
initialization that will autodetect the Sick’s baud rate. This feature is particularly nice
as it allows the application developer to avoid having to always specify the known current
baud rate of the device. For instance, suppose the device is operating at 500Kbps and
then the application is suddenly killed without having uninitialized the device. As a result,
the device is still operating at 500Kbps. Upon running the application again, the driver
will detect that the baud rates are not synchronized and will then select the correct baud
based upon the results obtained from a sequence of “pings” it sends to the device. Once
the proper baud is established, initialization will then commence.

Advanced Configuration: The Sick LMS 2xx C++ driver also allows for the config-
uration of such device parameters as: measurement mode, sensitivity level, availability
mode, and measuring units. To help make the configuration process easier, an example
application called lms config is included. It provides an interactive shell–like interface for
easily setting these EEPROM parameters.

Easily Set Device Variant: The driver also allows the application developer to easily
set the device variant. In particular, he/she can request the device to operate at a field–of–
view of either 180◦ or 100◦ with a scan resolution of either 0.50◦ or 0.25◦. See the examples
for details on how this can be easily done.

6.2 Using the Sick LMS C++ Driver

Figure 4: The Sick LMS 2xx family returns measurements as polar coordinates – scanning counter–clockwise. (Left)
A Sick LMS 2xx scan using 180◦ field–of–view. (Right) A Sick LMS 2xx scan using 100◦ field–of–view. Both (Left)
and (Right) are taken from the Sick LMS 2xx telegram listing [1].

10

6.2.1 Coordinate System

The Sick LMS 2xx LIDAR family returns measurements which can be interpreted as polar
coordinates. The device scans “counter–clockwise” as shown in Figure 4.

6.2.2 Program Structure

The Sick LMS 2xx driver is written so as to provide easy data acquisition from LMS laser
range finder units. In general, a program using the driver will follow the simple quaternary
state machine given in Figure 5. Thus, a C++ program utilizing the driver to acquire data
will perform three basic steps: initialize the device, acquire measurements and uninitialize
the device. The driver source was designed to exploit the capabilities of C++ exception
handling. As a result, all calls to methods should be surrounded by try/catch statements.

Figure 5: A quaternary state machine representing the simplest behavior of a C++ program utilizing the Sick LMS
2xx driver.

The following program shows a simple application of the driver to acquire measure-
ments. Notice that it implements the state machine in Figure 5.

#include <iostream>

#include <sicklms-1.0/SickLMS.hh>

using namespace std;

using namespace SickToolbox;

int main(int argc, char *argv[]) {

/* Specify device path and baud */

string dev_path = "/dev/ttyUSB0";

sick_lms_baud_t lms_baud = SickLMS::SICK_BAUD_38400;

/* Define buffers for return values */

11

unsigned int measurements[SickLMS::SICK_MAX_NUM_MEASUREMENTS] = {0};

unsigned int num_measurements = 0;

/* Instantiate the object */

SickLMS sick_lms(dev_path);

try {

/* Initialize the device */

sick_lms.Initialize(lms_baud);

/* Grab some measurements */

for(unsigned int i = 0; i < 10; i++) {

sick_lms.GetSickScan(measurements,num_measurements);

cout << "\t" << num_measurements << endl;

}

/* Uninitialize the device */

sick_lms.Uninitialize();

}

catch(...) {

cerr << "error" << endl;

return -1;

}

return 0;

}

In this example, the three most important methods are used. Following the state ma-
chine paradigm, the program begins by calling Initialize. Before any data can be streamed
this method must absolutely be called. Once initialization is complete, the device will then
grab scans from the LIDAR by calling the GetSickScan method. As the receive buffer is
constantly being monitored, the data returned from this call is guaranteed to be the most
recent buffered scan. Once the program is done acquiring data, it then uninitializes the
Sick LMS 2xx by calling Uninitialize, which returns the Sick LMS to a non-streaming state.
It is important that each program properly initialize and uninitialize the device.

This example uses the static constant SickLMS::SICK_MAX_NUM_MEASUREMENTS to de-
fine its buffer size. It is provided for convenience in the SickLMS class definition. It is

12

simply the maximum number of measurements determined by considering the maximum
scan area and the highest scan resolution for the Sick LMS 2xx. It alleviates having to
worry about computing buffer sizes for multiple configurations by ensuring that there is
always enough storage allocated to handle the maximum number of measurements the
device can return.

6.2.3 Properly Linking Programs

In order to utilize the Sick LMS 2xx driver, you must link against its associated library
(e.g. libsicklms-x) as well as the POSIX thread library on your system (e.g. -lpthread
or the -pthread flag). For instance, using g++ (in this case version 4.1.2) on Ubuntu (as
well as Debian), you can compile and link using the command:

g++ -o prog_name prog_name.cc -lsicklms-x -pthread

where prog name should be replaced with the name of your program and x denotes the
driver version number (e.g. libsicklms-1.0).

6.2.4 Example Programs

In addition to the C++ driver, the toolbox also comes with a variety of examples illustrating
its use. All of the example projects with code can be found in the directory:

sicktoolbox-x/c++/examples/lms

In all, there are nine examples including everything from a fully-functional configuration
utility to a program illstrating how to acquire high–resolution partial scans. More precisely,
the following examples are provided:

• lms_config – A configuration utility for Sick LMS 2xx laser range finders. Allows
setting: measuring units, measuring mode, availability, and more!

• lms_mean_values – Illustrates how to acquire mean value measurements from the
Sick LMS 2xx.

• lms_partial_scan – Demonstrates how to acquire high–resolution partial scans from
the Sick LMS 2xx.

• lms_plot_values (Requires gnuplot) – A simple program that plots range measure-
ments using gnuplot i++. Requires the gnuplot package to be installed.

• lms_real_time_indices – Illustrates how acquire real–time indices from the Sick
LMS 2xx with range information.

• lms_set_variant (Not compatible with LMS Fast models) – Demonstrates how to
properly set the Sick LMS 2xx variant (i.e. 180◦/0.5◦ or 100◦/0.25◦). LMS Fast
models do not support the variant command.

13

• lms_simple_app – A simple program template for working with the Sick LMS 2xx
C++ driver.

• lms_stream_range_and_reflect (Only compatible with LMS Fast models) – Illus-
trates how to acquire both range and reflectivity returns from LMS Fast models using
the driver interface.

• lms_subrange – Shows how to acquire a measured value subrange from the Sick
LMS.

Looking over these examples is the easiest way to quickly get yourself up and developing
with the driver interface.

Running the C++ Example Programs: In addition to building the C++ driver
interface, running make also builds each example in the example directory. If a dependency
(e.g. gnuplot) for a certain example is not detected then the associated example is not
built. The binary for each can be found in its respective src directory (e.g. for the
lms_config example, look in sicktoolbox-x/c++/examples/lms/lms_config/src). To
make things as easy as possible, all of the examples use the same command–line argument
format. In particular, to call any example, simply invoke it from the command line:

./example_name DEVICE_PATH DESIRED_BAUD

where DEVICE_PATH denotes the associated device path for the Sick (e.g. /dev/ttyUSB0)
and DESIRED BAUD is the desired session baud rate. Valid values for the latter are:
9600, 19200, 38400, and 500000. For instance, to run the example lms_simple_app with
your Sick LMS connected at /dev/ttyUSB0 via a USB–COMi–M adapter, you would call
it as follows:

./lms_simple_app /dev/ttyUSB0 500000

6.3 Using the Sick LMS Mex Interface

In a similar manner, the provided mex interface also follows the state machine given in
Figure 5. Currently, the mex interface does not support high-resolution partial scans
or mean measured values. Instead, it provides access to a data stream providing range
and/or reflectivity information from the Sick LMS 2xx. The returned data depends upon
the selected measuring mode of the device and/or the device type. For instance, if you are
using an LMS Fast, the mex interface will return both range and reflectivity values.

6.3.1 Mex Commands

A call to the Sick LMS 2xx can be made by using the installed sicklms mex function as
follows:

14

sicklms(CMD,ARGS)

where CMD is the command to issue to the device via the driver and ARGS denotes the
argument list for the command. In particular, the interface supports the commands shown
in Table 1. For example calls, see Table 2.

CMD ARGS

init DEVICE_PATH, DESIRED_BAUD
variant SCAN_ANG, SCAN_RES
grab N/A
info N/A

Table 1: Argument list for commands supported by Sick LMS mex interface.

CMD Example Call

init res = sicklms('init','/dev/ttyUSB0',9600);

variant sicklms('variant',100,0.25);

grab res = sicklms('grab');

info sicklms('info');

Table 2: Example calls for commands supported by the Sick LMS mex interface.

Although a command to explicitly uninitialize the device is not given, the same result
can be obtained by simply clearing the mex file. More precisely, make the following call

clear sicklms

from the Matlab command line.

Return Values: Additionally, notice that two of the commands (i.e. init and grab)
return values – both will likely be of interest. The init command returns a three element
structure with the fields given in Table 3.

Field Description

lms_fast (Boolean) True if device is LMS Fast, false otherwise
units_mm (Boolean) True if units are mm, false if units are cm
meas_mode Current measurement mode of device1

Table 3: Structure returned from sicklms(‘init’,DEVICE PATH,DESIRED BAUD)

1See page 96 of the Sick LMS 2xx Telegram Listing for details.

15

Field Description

res Angular scan resolution (0.25, 0.50, or 1.0)
fov Angular scan angle/fov (90, 100, or 180)
range n× 1 vector of range values2

reflect n× 1 vector of reflectivity values3

Table 4: Structure returned from sicklms(‘grab’)

The grab command also returns a structure. In this case, it is a four element structure
having the fields given in Table 4.

6.3.2 Program Structure

As mentioned earlier, a Matlab script using the Sick LMS 2xx mex interface will follow the
state machine given in Figure 5 – just as any C++ application would. To illustrate this
point, we provide the following example Matlab script. It allows the application developer
to acquire and process data from the unit. In this case, returned structures are displayed
using the Matlab disp function.

try

% Initialize the Sick LMS 2xx

ret = sicklms('init','/dev/ttyUSB0',500000);

disp(ret);

% Grab some measurements

for i = 1:10

data = sicklms('grab');

disp(data);

end

% Uninitialize the device

clear sicklms;

catch

error('An error occurred!');

end

16

Figure 6: (Left) Visual output of lms cart using a Sick LMS 291–S05. (Center) Range measurements obtained via
a Sick LMS 291–S14 using lms stream. (Right) Corresponding reflectivity measurements for (Center). In this case,
the spikes in reflectivity are caused by a pair of retro-reflectors placed ≈ 1.7 meters from the unit.

6.3.3 Example Programs

In addition to providing the mex interface, the toolbox also comes with examples illustrat-
ing the use of the sicklms function. In particular, the following examples are included:

• lms_cart – A demo program that converts the Sick LMS 2xx measurements from
polar to Cartesian coordinates and plots them in a figure window.

• lms_stream – Simply grabs raw data from the device and plots the values. If the
device is an LMS Fast, it will display both reflectivity and range returns.

• lms_variant – Shows how to properly set the device variant from Matlab.

Figure 6 provides screenshots for a few of the examples using different LMS units.

Running the Matlab Example Scripts: To make things as straight forward as pos-
sible, each of the examples uses the same command line argument format. In particular, to
invoke an example, call it using the following syntax (from the Matlab command prompt):

lms_example(DEVICE_PATH,BAUD_RATE)

where DEVICE_PATH refers to the path (e.g. /dev/ttyUSB0) associated with the Sick LMS
unit and the BAUD_RATE refers to the desired session baud. Valid values for the latter are
9600, 19200, 38400, or 500000. Make sure that the working Matlab directory points to the
sicktoolbox-x/mex/examples/lms directory. Also, be sure to replace lms_example with
the correct name of the example that you wish to run. For instance, to call the lms_cart

example using a Sick interfaced via a USB–COMi–M at /dev/ttyUSB0, simply call:

lms_cart('/dev/ttyUSB0',500000)

2range will be empty if the device is set to stream only reflectivity values.
3reflect will be empty if the device is set to stream only range values.

17

Additional Help and Documentation: For additional information with more example
calls and usage, be sure to check the help documentation associated with the sicklms

function. In particular, from within Matlab, simply call help as follows

help sicklms

6.4 Configuring the Sick LMS 2xx

WARNING! Configuring the Sick LMS 2xx – REQUIRES – writing to
the device’s EEPROM. The number of times this can be done is finite
(a few thousand). Thus, configure the device only when necessary.

Figure 7: lms config is a shell–like configuration utility provided with the Sick LIDAR Matlab/C++ Toolbox.
It provides a means to quickly reconfigure device parameters, including: measuring units, measuring mode, and
availability level. It also allows the end–user to view the current device settings.

It may be desirable to reconfigure the Sick LMS 2xx EEPROM to modify its behavior
for a certain task. To make such device configuration more practical, we also include an ap-
plication utility called lms_config. Although it is provided as an example C++ program,
lms_config is a helpful tool that allows the following parameters to be reconfigured:

• Measuring Units

• Measuring Mode

• Availability Level

• Sensitivity Level

18

Additionally, it allows you to quickly view the current device parameters. For additional
details on what precisely each of these parameters mean, see pages 96–98 of the Sick LMS
2xx Telegram Listing that came with your unit [1].

Note: lms config is installed provided you ran make install. Thus, you
should be able to call it directly as you would any other standard Linux
utility. It is the only Sick LMS 2xx example that is installed.

Configuring for Dazzle Recovery: By default the Sick LMS 2xx will “lockup” upon
being dazzled requiring the device to be reset. To configure the device to continue operating
despite being dazzled requires simply adjusting the availability level of the unit. The
easiest way to do this is to set the device to the highest availability via the lms_config

utility (e.g. options 2, 3, 4, or 5 in lms_config under “set availability level”). Using this
approach, dazzling will be indicated by returning an “overflow value” for the corresponding
measurement.4 As a result, each return should be filtered for overflow values. For instance,
in 8m/80m mode, the overflow value for dazzling is 8190 and any measurement matching
this value should be ignored. As the overflow values are a function of the device’s measuring
mode, be sure to see page 124 of the Sick LMS 2xx Telegram Listing to ensure you are
using the correct values.

Configuring to Stream Reflectivity: Although Sick LMS units are largely used for
accurate range measurements, they can also be configured to stream reflectivity information
instead. Setting this up is a straight forward process using the lms_config utility. In
particular, it simply requires adjusting to measuring mode to be “Reflectivity/Intensity
values.” Once this mode is set, all measurements will correspond to measured reflectivity
(echo amplitude) as opposed to distance values. It should be noted that this measuring
mode is not supported for LMS Fast units as they have a separate mode to stream both
range and reflectivity data.

7 Interfacing the Sick LD

7.1 Sick LD C++ Driver Features

The Sick LD C++ driver provides a concise interface for conveniently acquiring measure-
ments and configuring the Sick LD unit. Following are some of the available features:

Multi-threaded Implementation: Like the Sick LMS 2xx C++ driver, the Sick LD
driver utilizes the pthreads library. While the main thread is running, the driver thread

4See page 124 of the Sick LMS 2xx Telegram Listing for details regarding overflow values.

19

WARNING! (UNSTABLE SICK LD NETWORK STACK): By
design the Sick LD utilizes TCP/IP. In practice, we uncovered what we
suspect is a serious flaw in the design of the Sick LD network stack.
Putting the device unprotected on a network with excessive UDP traffic
can result in device failure. This device behavior was repeatable across
multiple LD units. Others have also experienced this problem indepen-
dently. If using a direct connection via a Sick LD Ethernet cross–over
cable is not practical, you can safely network the device if it is behind a
firewall that blocks UDP traffic.

(in particular, the “buffer monitor”) is busy ensuring that only the most recent complete
scan is buffered for return. As threading is integrated into the driver framework, there is
no need to worry about buffer management. By designing the driver this way, we alleviate
as much overhead for the application developer as possible, by allowing him/her to focus
on data–processing as opposed to data–management.

Support for Multiple Scan Areas: A novel feature of the Sick LD laser range finder
unit is that it supports multiple (configurable) scan areas. The Sick LD C++ driver
provides a simple interface for acquiring data from multiple scan sectors as well as any
related information. Additionally, it supports the configuration of these scan areas. The
application developer has the option of configuring the areas permanently in flash or just
temporarily until the device power is reset.

Utilizes BSD Sockets Interface: Unlike the Sick LMS driver, the Sick LD C++ driver
communicates over a standard BSD socket interface to the device. As a result, it supports
the fastest data rate possible.

7.2 Using the Sick LD C++ Driver

7.2.1 Coordinate System

The Sick LD LIDAR family returns measurements which can be interpreted as polar coor-
dinates. The device scans as shown in Figure 8.

7.2.2 Program Structure

The Sick LD C++ driver is designed to provide easy data acquisition as well as device con-
figuration. Like the Sick LMS 2xx driver, its design lends itself to developing applications
that emulate the quaternary state machine given in Figure 5, Section 6.2. The simplest
use of the driver is given in the following code segment, which assumes a single scan sector:

20

Figure 8: The Sick LD family returns measurements as polar coordinates in the illustrated direction. Multiple active
(or measuring) sectors can be defined over this scan area. This figure is a modified version of that appearing in the
Sick LD telegram listing [2].

#include <iostream>

#include <sickld-1.0/SickLD.hh>

using namespace std;

using namespace SickToolbox;

int main(int argc, char *argv[]) {

/* Define buffers for return values */

double measurements[SickLD::SICK_MAX_NUM_MEASUREMENTS] = {0};

unsigned int num_measurements = 0;

/* Instantiate the object */

SickLD sick_ld("192.168.0.12");

try {

/* Initialize the device */

sick_ld.Initialize();

/* Grab some range measurements */

for(unsigned int i = 0; i < 10; i++) {

sick_ld.GetSickMeasurements(measurements,NULL,&num_measurements);

cout << "\t" << num_measurements << endl;

21

}

/* Uninitialize the device */

sick_ld.Uninitialize();

}

catch(...) {

cerr << "error" << endl;

return -1;

}

return 0;

}

In this example, the three most important methods are used. Following the state ma-
chine paradigm, the program begins by calling Initialize. Before any data can be streamed
this method must absolutely be called. Once initialization is complete, the device will then
grab scans from the LIDAR by calling the GetSickMeasurements method. As the receive
buffer is constantly being monitored, the data returned from this call is guaranteed to be
the most recent buffered scan. Once the program is done acquiring data, it then unini-
tializes the Sick LD by calling Uninitialize, which returns the Sick LD to a non-streaming
state. It is important that each program properly initialize and uninitialize the device.

This example uses the constant SickLD::SICK_MAX_NUM_MEASUREMENTS to define its
buffer size. This constant is provided for convenience in the SickLD class definition. It is
simply the maximum number of measurements determined by considering the maximum
scan area and the highest scan resolution for the Sick LD. It alleviates having to worry
about computing buffer sizes for multiple configurations by ensuring that there is always
enough storage allocated to handle the maximum number of measurements the device can
return.

It is worth noting that the majority of applications will find this example the most
relevant as they will likely require only a single active scan sector. However, in the event
data from multiple sectors is required, we present the following example.

#include <iostream>

#include <sickld-1.0/SickLD.hh>

#define NUM_SECTORS (3)

using namespace std;

22

using namespace SickToolbox;

int main(int argc, char *argv[]) {

/* Define buffers for return values */

double measurements[SickLD::SICK_MAX_NUM_MEASUREMENTS] = {0};

/* Define buffers to hold sector specific data */

unsigned int num_measurements[NUM_SECTORS] = {0};

unsigned int sector_data_offsets[NUM_SECTORS] = {0};

unsigned int sector_ids[NUM_SECTORS] = {0};

/* Instantiate the object */

SickLD sick_ld("192.168.0.12");

try {

/* Initialize the device */

sick_ld.Initialize();

for(unsigned int i = 0; i < 10; i++) {

/* Grab the measurements (from all sectors) */

sick_ld.GetSickMeasurements(measurements,

NULL,

num_measurements,

sector_ids,

sector_data_offsets);

/* Print the num measurements and the first

* measured value for each measuring sector

*/

for(unsigned int j = 0; j < NUM_SECTORS; j++) {

cout << "\tSector: " << sector_ids[j]

<< " Num. Meas: " << num_measurements[j]

<< " First Value: " << measurements[sector_data_offsets[j]]

<< endl;

}

cout << endl;

23

}

/* Uninitialize the device */

sick_ld.Uninitialize();

}

catch(...) {

cerr << "error" << endl;

return -1;

}

return 0;

}

In the latter example, we allocate a single buffer to hold the returned measurements.
As the scan area associated with each sector can vary, we aggregate the measurements into
a single buffer and then provide “sector data offsets” into this buffer, where the data for
the associated sector can be found. The data can then be accessed via indexing accordingly
as in the example or by appropriate pointer arithmetic. Additional information about each
of the sectors can also be obtained. See the corresponding doxygen generated documents
in the doxygen-doc/html directory for more details.

7.2.3 Properly Linking Programs

In order to utilize the Sick LD driver, you must link against its associated library (e.g.
libsickld-1.0) as well as the POSIX thread library on your system (e.g. -lpthread

or -pthread). For instance, using g++ (in this case version 4.1.2) on Ubuntu (as well as
Debian), you can compile and link using the command:

g++ -o prog_name prog_name.cc -lsickld-x -pthread

where prog_name should be replaced with the name of your program and x denotes the
Sick LD library version (e.g. libsickld-1.0).

7.2.4 Example Programs

In addition to the C++ driver, the toolbox also comes with a variety of examples illustrating
its use. All of the example projects with code can be found in the directory:

sicktoolbox-x/c++/examples/ld

24

In all, there are four examples including everything from a file–driven configuration
utility to a program illustrating how to acquire data from multiple active scan areas. More
precisely, the following examples are provided:

• ld_config – A configuration utility for Sick LD laser range finders. Allows setting:
motor speed, scan resolution and scan areas.

• ld_more_config – Illustrates how to do additional (advanced) configuration using
the Sick LD C++ driver.

• ld_single_sector – Demonstrates the easiest method for acquiring data from a Sick
LD configured with a single sector.

• ld_multi_sector – Demonstrates acquiring data from a Sick LD configured with
multiple sectors.

Looking over these examples is the easiest way to quickly get yourself up and developing
with the driver interface.

Running the C++ Example Programs: In addition to building the C++ driver
interface, running make also builds each of the examples in the example directory. If a
dependency for a certain example is not detected then the associated example is not built.
The binary for each can be found in its respective src directory (e.g. for the ld_config

example, look in sicktoolbox-x/c++/examples/ld/ld_config/src). To make things as
easy as possible, all of the examples use the same command–line argument format. In
particular, to call any example, simply invoke it from the command line as follows:

./example_name [DEVICE_IP]

where DEVICE_IP (default: “192.168.1.10”) denotes the associated IP address for the Sick.
For instance, to run the example ld_single_sector with your Sick LD using the factory
default IP address of 192.168.1.10, simply call it as follows:

./ld_single_sector

7.3 Using the Sick LD Mex Interface

7.3.1 Mex Commands

A call to the Sick LD can be made by using the installed sickld mex function as follows:

sickld(CMD,ARGS)

where CMD is the command to issue to the device via the driver and ARGS denotes the
argument list for the command. In particular, the interface supports the commands shown
in Table 5. For example calls, see Table 6.

Although a command to explicitly uninitialize the device is not given, the same result
can be obtained by simply clearing the mex file. More precisely, make the following call

25

CMD ARGS

init DEVICE_IP

range N/A
range+reflect N/A

info N/A

Table 5: Commands supported by Sick LD mex interface.

CMD Example Call

init sickld('init','192.168.1.10');

range res = sickld('range');

range+reflect res = sickld('range+reflect');

info sickld('info');

Table 6: Example calls for commands supported by the Sick LD mex interface.

clear sickld

from the Matlab command line.

Return Values: Additionally, notice that two of the commands (i.e. range and range+reflect)
return values. Both commands return an array of eight element structures (one for each
measuring sector) each with the fields given in Table 7.

Field Description

id Sector ID number
res_ang Angular resolution over sector
beg_ang Beginning angle of sector (included in scan)
end_ang Ending angle of sector (included in scan)
beg_time Time at which first measurement was obtained
end_time Time at which last measurement was obtained
range n× 1 vector of range measurements

reflect n× 1 vector of reflectivity Measurements

Table 7: Structure returned from sickld(‘init’,DEVICE IP)

7.3.2 Program Structure

As mentioned earlier, a Matlab script using the Sick LD mex interface will follow the state
machine given in Figure 5, Section 6.2 – just as any C++ application would. To illustrate
this point, we provide the following example Matlab script. It is a simple implementation
allowing the application developer to acquire and process data.

26

try

% Initialize the Sick LD

sickld('init','192.168.0.12');

for i=1:10

% Grab the most recent values

data = sickld('range+reflect');

% Print the ID of each sector

for j = 1:length(data)

disp(data(j).id);

end

end

% Uninitialize the device

clear sickld;

catch

error('An error occurred!');

end

Attention: The Sick LD mex interface by design will return an array
of structures – one for each active sector. To access the data structure
associated with the i

th scan area sub–index it. For example, if the device
is configured with two active scan areas then data(1) will correspond to
the data structure corresponding to the first and data(2) will correspond
to the second. If the device is only using a single scan sector then sub-
indexing is not required (e.g. use data instead of data(1)).

7.3.3 Example Programs

In addition to providing the mex interface, the toolbox also comes with examples illustrat-
ing the use of the sickld function. In particular, the following examples are included:

• ld_cart – A demo program that converts the Sick LD measurements from polar to
Cartesian coordinates.

• ld_stream – Simply grabs raw data from the device and plots the values obtained
from each sector in separate figures (e.g. if there are three active/measuring sectors
then three figures will be generated).

27

Figure 9: (Left) Visual output of ld cart using a Sick LD–LRS 1000 scanning over a single scan area of [0, 359.5]
at 0.5◦ scan resolution. (Center, Right) Range and reflectivity measurements obtained for two separate scan areas
defined respectively over: [90, 270] and [315, 45].

Figure 9 provides screenshots for the examples using a Sick LD–LRS 1000.

Running the Matlab Example Scripts: To make things as straight forward as
possible, each example uses the same command line argument format. In particular, to
invoke an example, call it using the following syntax (from the Matlab command prompt):

ld_example(DEVICE_IP,ARGS)

where DEVICE_IP refers to the IP address (e.g. ‘192.168.1.10’) associated with the Sick LD
unit and ARGS is any additional optional arguments for the example. To learn what argu-
ments are accepted for a particular example, just type help followed by the example name.
Make sure that the working Matlab directory points to the sicktoolbox-x/mex/examples/ld
directory. As an example, to call ld_cart simply invoke it from the Matlab command line
it as follows:

ld_cart('192.168.1.10')

Note that the IP address for these examples must be specified as the m–files make no
assumptions regarding the default address of the device.

Additional Help and Documentation: For additional information with more example
calls and usage, be sure to check the help documentation associated with the sickld

function. In particular, from within Matlab, simply call:

help sickld

7.4 Configuring the Sick LD

It may be desirable to reconfigure the Sick LD to modify its parameters for a certain task.
To make such device configuration more practical, we also include an application utility

28

Figure 10: ld config is a configuration utility provided with the Sick LIDAR Matlab/C++ Toolbox. It provides a
means to reconfigure device parameters using a simple configuration file. It allows the end–user to set: motor speed,
scan resolution, and active/measuring scan areas. Additionally, the end–user can view the current device settings.

called ld_config. Although it is provided as an example C++ program, ld_config is a
helpful tool that allows the following parameters to be reconfigured:

• Motor Speed

• Scan Resolution

• Scan Areas

Additionally, it allows you to quickly view the current device parameters. Note that the
ld_config utility is installed provided you ran make install. Thus, you can call it directly
from your shell as you would any other standard Linux utility. It is the only example that
is installed.

Due to the large number of possible scan configurations, we decided to implement
ld_config to use a configuration file. To adjust the configuration parameters for the
device, you can simply modify the file and then run ld_config. The utility will give you
the option of displaying the current configuration or setting a new one by supplying the
source file name. Figure 10 shows what the main screen looks like.

An Example Configuration File: Each configuration file must define three settings for
the device: motor speed, resolution, and scan areas. These parameters are set by assigning
value to one of the following variables in the configuration file:

• SICK_LD_MOTOR_SPEED

• SICK_LD_SCAN_RESOLUTION

• SICK_LD_SCAN_AREAS

It should be noted that all three variables must be set in the file otherwise an error will be
thrown. Following is a sample configuration file contained in the sicktoolbox-x/c++/examples/ld/ld_config

29

directory.

###

#

The Sick LIDAR Matlab/C++ Toolbox

#

File: sickld.conf

Auth: Jason Derenick and Thomas Miller at Lehigh University

Cont: derenick(at)lehigh(dot)edu

Date: 20 July 2007

#

Desc: Sample config file for ld_config utility.

#

###

Define the Sick LD motor speed (Hz)

SICK_LD_MOTOR_SPEED = 10

Define the Sick LD scan res. (angle step) in degrees

SICK_LD_SCAN_RESOLUTION = 0.5

Define the active scan areas for the device

SICK_LD_SCAN_AREAS = [90 270] [315 45]

This configuration file indicates that the device should be set for two active scan areas
(at most there can only be four) – each is defined as a closed set in the configuration file.
Additionally, it specifies the motor to operate at 10Hz (the slowest motor speed is 5Hz with
a max being 20Hz for LD models excluding the LD–LRS 1000) and the scan resolution to
be a half–degree (valid values are multiples of 0.125◦ that do not exceed 1.0◦). Addition-
ally, please note that the scan resolution must evenly divide into the boundaries defining
each of the scan areas. To learn more about additional configurational parameters and for
a detailed description on what constitutes a valid configuration be sure to see [2].

8 Uninstalling the Toolbox

8.1 Uninstalling the C++ Drivers

Uninstalling the C++ driver libraries is simply a matter of running make uninstall.

30

8.2 Uninstalling the Mex Interfaces

Uninstalling the mex interface is also a straightforward. Just delete the directory:

$MATLAB/toolbox/sick

where $MATLAB is the root directory of your Matlab install.
To complete the uninstallation, just remove the corresponding directory from your

Matlab path. To do this, simple run

pathtool

and then click and delete the $MATLAB/toolbox/sick path listing.

9 Doxygen Documentation

All of the C++ contained in the toolbox is commented using Doxygen commenting stan-
dards. Assuming Doxygen is installed on your machine, simply run:

make doxygen-doc

from the sicktoolbox–x directory. This will generate the project’s source code documen-
tation and place it in the sicktoolbox–x/doxygen–doc directory. To view it, simply open
sicktoolbox–x/doxygen–doc/html/index.html in your favorite web browser. Additionally,
you can browse the Doxygen generated comments on the project’s website at:

http://vader.cse.lehigh.edu/sicktoolbox

10 Open–Source Software License

The Sick LIDAR Matlab/C++ Toolbox is offered under a BSD Open-Source License.

The Sick LIDAR Matlab/C++ Toolbox (BSD) License

The Sick LIDAR Matlab/C++ Toolbox

Copyright (c) 2008, Jason C. Derenick and Thomas H. Miller

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

31

are met:

* Redistributions of source code must retain the above

copyright notice, this list of conditions and the following

disclaimer.

* Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials

provided with the distribution.

* Neither the name(s) of the copyright holders nor the names

of its contributors may be used to endorse or promote products

derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

--

References

[1] SICK AG Waldkirch. Telegrams for Configuring and Operating the LMS 2xx Laser
Measurement System, 2006.

[2] SICK AG Waldkirch. User Protocol Services for Operating/Configuring the LD–
OEM/LD–LRS Laser Measurement System, 2006.

32

